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We report Monte Carlo studies of a two-dimensional soft colloidal crystal confined in a strip geometry by
parallel walls. The wall-particle interaction has corrugations along the length of the strip. Compressing the
crystal by decreasing the distance between the walls induces a structural transition characterized by the sudden
appearance of a one-dimensional array of extended defects each of which span several lattice parameters, a
“soliton staircase.” We obtain the effective interaction between the solitons. A Lindemann criterion shows that
the reduction in dimensionality causes the finite soliton lattice to readily melt as the temperature is raised.
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There are many examples of condensed-matter systems
where extended defects in some order-parameter field behave
as effective “particles” which themselves undergo order-
disorder transitions with important consequences for the
properties of the original system. One can easily recall many
examples such as charge �1� or spin �2� density waves, vor-
tex matter �3�, Skyrmions �4� in fractional quantum Hall sys-
tems, and domain walls in commensurate-incommensurate
phases �5�. In many of these examples, the typical size of
these defects is much larger than the smallest relevant micro-
scopic length scale. Investigation of the properties of such
defect lattices requires knowledge of the effective interac-
tions between defects which are usually difficult to measure
directly in experiments. They are also difficult to obtain from
computer simulations because of the large difference in
length scales involved and can usually be computed only
within a mean-field approach and in the highly dilute limit
�6�. In this Rapid Communication we describe a simple ex-
ample involving extended defects in a colloidal solid �7,8�
where, on the other hand, such effective interactions may be
obtained to great accuracy using a relatively small system
with appropriate use of finite-size techniques.

In a recent work �9�, we have shown that one can produce
novel defect states in a colloidal crystal confined within a
narrow quasi-one-dimensional strip �10� by deforming it in a
suitable way. We perform constant number, N, volume, V,
and temperature, T, Monte Carlo simulations �11� of a simple
model solid with particles interacting with a potential
�12–14� V�r�=�� �

r �12 at a distance r. The solid consisting of
N=ny �nx unit cells with lattice parameter a is confined in a
channel of length Ly =nya and width D= �nx−��a�3 /2,
where � is a “misfit” parameter �Fig. 1 �inset��. Periodic-
boundary conditions are assumed in the y direction whereas,
in the x direction, the crystalline strip is confined by two
fixed walls composed of two rows of immobile particles.
When �=0, one obtains a triangular crystalline solid be-
tween the walls at zero tensile stress �. With increasing mis-
fit � �i.e., tensile strain� � increases up to some critical

value, where a transition occurs that reduces nx by one. At
constant density, the ny extra particles of the row that disap-
pears are distributed equally among the nx−3 inner rows of
the strip �9� making the resulting average lattice spacing
a�=a�nx−3� / �nx−2� incommensurate with the effective pe-
riodic potential due to the rows of fixed particles. This leads
to the formation of a “soliton staircase” �9� along the length
of the walls, �accompanied by a pattern of standing strain

�∆�

σ

FIG. 1. �Color online� Internal stress �=�xx−�yy �in Lennard-
Jones units� in the confined crystalline strip plotted vs �, for the
case of a system started with nx=30, ny =108 �full symbols� and a
system started with nx=29, ny =108 with the 108 extra particles
distributed among the 27 inner rows, �open symbols�. Curves are
guides to the eye only. Inset: a schematic sketch of our geometry:
we study a system of size D in x direction and Ly in the y direction,
apply periodic boundary condition along the y axis, while the
boundary in the x direction is created by two rows of fixed particles
�shaded� on the ideal positions of a perfect triangular lattice at each
side. In the fully commensurate case, D=nxa�3 /2.
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waves in the crystal� according to the Frenkel-Kontorova
mechanism �15�. The number of solitons produced is given
by ns=ny / �nx−3� �9� since each soliton contains a single
excess particle per row. Here we extend our study and inves-
tigate the structural and mechanical properties of the system
and show that the soliton superstructure in confined crystals
behaves as a one-dimensional system of extended “particle”-
like excitations which interact among themselves via an “ef-
fective” harmonic potential. We show how to extract the har-
monic “spring constant” of this effective lattice and study the
gradual melting of the soliton lattice into a soliton fluid
caused by raising the temperature. We expect our calcula-
tions to be of direct relevance to experiments on confined
colloidal crystals �7,8,16�.

In order to extract properties of the defect system, we
need to obtain the size and position of the individual defects.
We describe below two independent techniques we use for
this purpose which obtain near identical results lending
added weight to our conclusions:

�1� the ring method: here, we identify the particles which
belong to a single defect using the topologically defined con-
cept of shortest path �SP� ring structures; the procedure is
discussed at length in Refs. �17–19� to which we refer the
interested reader for details. Briefly, we classify particles as
belonging either to a standard six-membered SP ring or to a
modified six-membered SP ring. A particle belongs to an SP
ring if the number of bonds passed through in moving from
one particle of the ring to another is the shortest among all
possible paths through the network of bonds. If, in addition,
every particle of the ring is also bonded to a single central
particle, the particles are said to belong to a modified SP
ring. By definition, particles belonging only to SP rings rep-
resent regions containing defects, while those belonging to
modified SP rings represent ideal crystalline arrangement.
Once the positions of the atoms belonging to defect �soliton�
locations are obtained, standard cluster counting techniques
obtains the coordinates of the atoms associated with each
individual defect. We observe that �1� the defects are ex-
tended structures consisting of more than one atom and �2�
the number of atoms comprising a defect is more or less
fixed. We can then easily obtain the center-of-mass coordi-
nates of each defect �i.e., group of pink/light gray particles,
see Fig. 2�c��. In Fig. 2�c�, the red and pink colors represent
the locally ideal and defective neighborhoods, respectively,
inside the two-dimensional strained colloidal crystal showing
the stabilization of a soliton lattice at four different tempera-
tures. As T increases, the location and size of the defects
become ambiguous due to the presence of random thermal
fluctuations.

�2� The blocking method: to confirm that the extracted
soliton positions are independent of the method used to ana-
lyze these configurations, we have an alternate “blocking”
method to obtain an independent estimation. Accordingly, we
introduce a block length Lb=nba, where a is the lattice con-
stant of the undeformed lattice. We choose nb=8–12 and
hence Lb such that nb�1 but Lb still clearly less than the
typical distance between the solitons. By moving this coarse-
graining block along a row in the y direction �in steps of a�,
we count how many particles n actually fall inside a block. If
we work at low enough temperatures, where the mean-square

displacement of the particles over the length Lb is still much
less than a2, we obtain n=nb if no soliton core falls into the
block, while we obtain n=nb+1 if a soliton core falls into the
block. Calculating the center of mass of a cluster of adjacent
blocks with n=nb+1 then yields an alternative estimate for
the position of a soliton in a system configuration.

Both the methods yield the same structure of the soliton
lattice. This consists of two identical and strongly coupled
one-dimensional arrays of extended defects near each con-
fining wall �Fig. 2�c��. In Fig. 3�a� we have plotted probabil-
ity distributions for �y the distance between the center-of-
mass positions yl ,yl+1 of neighboring defects l , l+1, within
each defect array and for �x the distance between the two
arrays. In the inset we have shown a plot of the center-of-
mass position yl of each defect within one array against yl�,
the position of the nearest defect in the other. These plots
prove that �1� the constituent defect arrays fluctuate mostly
parallel to the walls and �2� the fluctuations of the two defect
arrays are, as mentioned, strongly coupled resulting in a
single effectively one-dimensional lattice of solitons.

Each soliton is then described as an effective point par-
ticle of mass M, position yl and conjugate momentum �l.
The Hamiltonian for the harmonic chain is given by

Hsol =
1

2�
l

��l
2/M + MC2�yl+1 − yl − �y0�2/��y0�2� �1�

where parameter C is the sound velocity and �y0 the thermal
average of �y. From Eq. �1� one obtains the correlation func-
tion of the mean-square displacements Ul=yl− l�y0 as �20�
��Ul−U0�2�= l��y0�2kBT / �MC2�= l�2, the relative displace-
ments �yl adding up in a random-walk-like fashion �13�.
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FIG. 2. �Color online� Characterization of the six-membered SP
rings: �a� the modified six-membered ring where C is the central
particle, �b� an SP-six-membered ring containing three antipodal
pairs �a1, a2�, �b1, b2�, �c1, c2� the shortest paths of equal distance
between �a1� and �a2� are through �b1� and �c1� or through �c2� and
�b2�. �c� The results of two-dimensional ring analysis on 108�30
colloidal crystals. In each case, a lattice consisting of
ns=4=108 / �30−3� solitons, comprising two arrays of defects
�pink/light gray� near each confining wall, was stabilized at tem-
peratures T=0.7�i�, 0.5�ii�, 0.3�iii� and 0.1�iv�. Note that as the
temperature is increased, random thermal fluctuations produce de-
fects within the bulk of the strip, making the identification of the
defects more and more ambiguous.
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As long as ���y0, the one-dimensional correlation ex-
tends over many solitons, and the term soliton lattice, in a
sense, is still meaningful; when � is no longer much smaller
than �y0; however, the system rather should be described as
a soliton liquid. As is well known, the melting of a one-
dimensional crystal is a continuous transition �		1 /T�. If

one nevertheless defines �19� an effective melting tempera-
ture Tm

sol for one-dimensional systems by arbitrarily requiring
that their Lindemann parameter � /�y0
0.01, one would ob-
tain kBTm

sol=0.01MC2 as the temperature scale that controls
the melting of the soliton lattice. Though clearly the melting
of the soliton lattice is far from a sharp thermodynamic
phase transition, this already suggests that the soliton lattice
may melt at rather low temperature, far below the melting
temperature Tm
1.35 of the bulk two-dimensional crystal at
the chosen density �12�.

We now compare the probability distribution P��y� from
both the ring analysis method and the blocking method. Fig-
ure 4 shows that both methods of analyzing the configura-
tions to identify the solitons agree almost perfectly with each
other, and P��y� is rather well described by a Gaussian,
P��y�=�1 /2��2 exp�−��y−�y0�2 /2�2� where, for a
108�20 system, we use �y0=18=ny /ns=108 /6 and the
only fit parameter is �. From Eq. �1� it is obvious that the
quantity K=MC2 / ��y0�2=kBT /�2 plays the role of an elastic
constant. Figure 3�b� therefore plots kBT /K vs T to test to
what extent K is independent of temperature. Note that the
resulting value of K=7.3�0.3 is about an order of magni-
tude smaller than typical elastic constants �	100kBT /a2� of
the underlying r−12 solid �13�, a result which we speculate
should hold for similar defect lattices regardless of the nature
of the interparticle interactions. Further, for fixed Ly �or ny�,
K decreases with increasing nx �or �y0�. Finally, we note that
the Lindemann ratio 0.01 is reached at an effective melting
temperature Tm

sol=0.44. This value is compatible with the di-
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FIG. 3. �Color online� Statistics of defect positions in the soliton
lattice. Data for this and subsequent figures are for a system with
L=nya with ny =108, and ns=6 solitons present after a transition
from nx=20 to nx=19. �a� Plot of P��y� �open circles� and P��x�
�solid circles� at T=0.2 for a 108�20 system. Note that P��x� is an
order of magnitude narrower than P��y�. Inset shows a plot of yl,
the position of the lth defect in one array against yl�, the correspond-
ing defect in the other. �b� Plot of kBT /K, as extracted from P��y�,
versus T. Open and closed symbols are the results from the block
and the 2d ring analysis method, respectively. The straight line is a
fit to all data, yielding K=7.3�0.3.

∆y

P
(∆
y
)

P
(∆
y
)

P
(∆
y
)

P
(∆
y
)

∆y ∆y

∆y

(a) (b)

(c) (d)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

12 14 16 18 20 22 24

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

12 14 16 18 20 22 24

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

12 14 16 18 20 22 24

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

12 14 16 18 20 22 24

FIG. 4. �Color online� Probability distribution P��y� versus �y, for �a� T=0.1, �b� 0.2, �c� 0.3, and �d� 0.6. Symbols have the same
meaning as in Fig. 3. The lines show the corresponding Gaussian fits.
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rect observation of the effective melting temperature ob-
tained from the structure factor.

Following Ref. �21� one can obtain the structure factor
Ssol�q� for a finite one-dimensional lattice of ns soliton, using
� and �y0 as parameters,

Ssol�q� =
1

2 �
l=1

ns−1

cos�ql�y0�exp�−
1

2
q2�2l� �2�

While at T=0 in the limit Ly and ns→ the soliton lattice
would cause sharp Bragg peaks for all T�0 the soliton sys-
tem is expected to have a liquidlike structure factor. Figure 5
shows simulation data for Ssol�q� vs q at various tempera-
tures. We note that at T=0.1 indeed the peaks of Ssol�q� are
already rather sharp, while for T�0.3 the structure factor
clearly has the character of a fluid. The nature of the curves
is well represented by the form given in Eq. �2�.

In our previous studies �9�, we reported our work on soli-
ton staircases and strain wave patterns in confined soft two-
dimensional colloidal crystals. In the present Rapid Commu-
nication, we obtain accurate effective interactions between
the solitons and report a gradual melting of the soliton su-
perlattice in analogy to that of harmonic chains. We believe
that our studies would be useful in designing experimental
colloidal systems where such defect lattices in narrow chan-
nels may be stabilized. These structures, which have some
resemblance to vortex matter in channels �22�, may have
interesting optical and transport properties. Work along these
lines is in progress.
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FIG. 5. �Color online� Structure factor of the soliton staircase
Ssol�q� vs q at temperatures T=0.1�+�, 0.2�*�, 0.3 ���, 0.4 ���, and
0.6 ���. Symbols are the actual simulation data obtained from ei-
ther the �a� ring analysis or the �b� block analysis; lines are guides
to the eyes. Each curve has been shifted by an unit distance in the
vertical direction for clarity. Note that both �a� and �b� give compa-
rable results.
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